Klasifikasi Jamur Beracun Menggunakan Algoritma Naïve Bayes dan K-Nearest Neighbors

نویسندگان

چکیده

Jamur adalah salah satu organisme eukariot heterotrof dengan jenis yang sangat banyak, sekitar 1.500.000 di dunia. Namun, pengenalan akan jamur masih kurang, dimana jumlah sudah dikenali hanya sebanyak 74.000 jenis. Beragamnya ini membuat klasifikasi menjadi penting agar manusia tidak mengonsumsi beracun memberikan dampak negatif. Penelitian bertujuan untuk menemukan algoritma terbaik dalam pengklasifikasian dan beracun. Klasifikasi berdasarkan ciri-cirinya dapat dilakukan melalui penerapan Naïve Bayes k-Nearest Neighbors (kNN) pada dataset jamur. Hasilnya, rata-rata akurasi sebesar 92%, lebih kecil dibanding 98%. Rata-rata presisi sama, yaitu 92,5%. recall bayes 91,5% Berdasarkan akurasi, presisi, kedua tersebut, disimpulkan bahwa baik dari tergolong karena nilainya berada diatas 90%.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Naive Bayes Image Classification: Beyond Nearest Neighbors

Naive Bayes Nearest Neighbor (NBNN) has been proposed as a powerful, learning-free, non-parametric approach for object classification. Its good performance is mainly due to the avoidance of a vector quantization step, and the use of image-to-class comparisons, yielding good generalization. In this paper we study the replacement of the nearest neighbor part with more elaborate and robust (sparse...

متن کامل

Search K Nearest Neighbors on Air

While the K-Nearest-Neighbor (KNN) problem is well studied in the traditional wired, disk-based client-server environment, it has not been tackled in a wireless broadcast environment. In this paper, the problem of organizing location dependent data and answering KNN queries on air are investigated. The linear property of wireless broadcast media and power conserving requirement of mobile device...

متن کامل

k*-Nearest Neighbors: From Global to Local

The weighted k-nearest neighbors algorithm is one of the most fundamental nonparametric methods in pattern recognition and machine learning. The question of setting the optimal number of neighbors as well as the optimal weights has received much attention throughout the years, nevertheless this problem seems to have remained unsettled. In this paper we offer a simple approach to locally weighte...

متن کامل

Predicting Medical Conditions Using k-Nearest Neighbors

As the healthcare industry becomes more reliant upon electronic records, the amount of medical data available for analysis increases exponentially. While this information contains valuable statistics, the sheer volume makes it difficult to analyze without efficient algorithms. By using machine learning to classify medical data, diagnoses can become more efficient, accurate, and accessible for t...

متن کامل

Optical Character Recognition, Using K-Nearest Neighbors

The problem of optical character recognition, OCR, has been widely discussed in the literature. Having a hand-written text, the program aims at recognizing the text. Even though there are several approaches to this issue, it is still an open problem. In this paper we would like to propose an approach that uses K-nearest neighbors algorithm, and has the accuracy of more than 90%. The training an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Jurnal Ilmu Komputer dan Informatika

سال: 2023

ISSN: ['2807-6664', '2807-6591']

DOI: https://doi.org/10.54082/jiki.68